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ℕ=set of natural numbers {1,2,3 … … . } 

ℕ ∪ {0}=set of whole numbers {0,1,2, … … } 

ℤ=set of integers {… … … . , −2, −1,0,1,2, … … … } 

ℚ=set of rational numbers {
𝑝

𝑞
: 𝑝 ∈ ℤ, 𝑞 ∈ ℕ; gcd(𝑝, 𝑞) = 1} 

ℝ/ℚ=set of irrational numbers 

 Prove that, √𝑚 is an irrational number where m is a 

non-square integer. 

 𝑟𝑟 , 𝑟𝑖 , 𝑖𝑟, 𝑖𝑖 all may be both rational and irrational 

(r=rational, i=irrational). [try to find examples] 

 

ℕ ⊂ ℤ ⊂ ℝ ⊂ 𝐶 
 

Well ordering principle:  Any subset of natural number has a 

minimum element. 

Mathematical induction:  

A) If some statement is true at some preliminary steps, and 

assuming it to be true at some 𝑚𝑡ℎ stage, if we can show it to 

be true for (𝑚 + 1)𝑡ℎ stage, then it will be true for all natural 

numbers. 

B)(Strong form) In spite of assuming it to be rue for only m, 

we assume it to be true for 𝑛 = 1,2, … … , 𝑚. 

 



Some problems on mathematical induction: 

1)1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
. 

2) 12 + 22 + ⋯ + 𝑛2 =
𝑛(𝑛+1)(2𝑛+1)

6
 

3) 13 + 23 + ⋯ + 𝑛3 = [
𝑛(𝑛+1)

2
]

2

= (1 + 2 + ⋯ + 𝑛)2 

4) 1 + 3 + 5 + ⋯ + (2𝑛 − 1) = 𝑛2 

5) 1.1! + 2.2! + ⋯ + 𝑛. 𝑛! = (𝑛 + 1)! − 1 

6)√1 +
1

12 +
1

22 + √1 +
1

22 +
1

32 + ⋯ + √1 +
1

𝑛2 +
1

(𝑛+1)2 =
𝑛(𝑛+2)

𝑛+1
 

7)
1

2
.

3

4
.

5

6
…

2𝑛−1

2𝑛
≤

1

√2𝑛+1
 

8)
1

2
.

3

4
.

5

6
… .

2𝑛−1

2𝑛
≤

1

√3𝑛+1
 

Divisibility: 

′𝑎′ divides ′𝑏′ is denoted by 𝑎|𝑏. 

Properties: 

i) 𝑎|𝑏, 𝑏|𝑐, 𝑡ℎ𝑒𝑛 𝑎|𝑐 

ii) 𝑎|𝑏, 𝑎|𝑐, 𝑡ℎ𝑒𝑛 𝑎|𝑏𝑥 + 𝑐𝑦 [𝑥, 𝑦 ∈ ℤ] 

iii) 𝑎|𝑏, 𝑐|𝑑, 𝑡ℎ𝑒𝑛 𝑎𝑐|𝑏𝑑. 

iv) 𝑎|𝑏, 𝑥|𝑏, 𝑖𝑓 gcd(𝑎, 𝑥) = 1, 𝑡ℎ𝑒𝑛 𝑎𝑥|𝑏. But the reverse is 

not always true. 

Some preliminary problems on divisibility: 

1) 𝑑 = gcd(𝑛2 + 20, (𝑛 + 1)2 + 20) , 𝑛 ∈ ℕ. Show that 𝑑|81. 

2)𝑑𝑛 = gcd(𝑛3 + 𝑛2 + 1, 𝑛3 + 𝑛 + 1) , 𝑛 ∈ ℕ.Find 𝑑32022 . 



3)Prove that 5|32008 + 42009 

Cyclicity of numbers: 

For 2, the last digits of power returns as (2,4,8,6). It is cycle of 

order 4. Same for 3, the cycle is (3,9,7,1) 

Some Theorems: 

i) 𝑎, 𝑏 ∈ ℤ, and they are distinct. Then (𝑎 − 𝑏)|(𝑎𝑛 − 𝑏𝑛). 

ii) 𝑎, 𝑏 ∈ ℤ, 𝑎 + 𝑏 ≠ 0, 𝑡ℎ𝑒𝑛 (𝑎 + 𝑏)|(𝑎𝑛 + 𝑏𝑛) ∀𝑛 ∈ ℕ. 

iii) There are infinitely many primes [a prime is that number 

which is exactly 2 divisors] 

Some problems: 

1) 133|11𝑛+2 + 122𝑛+1. 

2) 𝑘 = 13017 + 23017 + ⋯ + 2003017. Prove that 40200|𝑘. 

3)Find all 𝑛 ∈ ℕ, such that (𝑛 − 3)|(𝑛3 − 3). 

Euclidean Algorithm: 

Steps of divisors: 

𝑏 = 𝑎𝑞1 + 𝑟1 

𝑎 = 𝑟1𝑞2 + 𝑟2 

𝑟1 = 𝑟2𝑞3 + 𝑟3 

⋮ 

                                          𝑟𝑛−2 = 𝑟𝑛−1𝑞𝑛 + 𝑟𝑛 

                                           𝑟𝑛−1 = 𝑟𝑛𝑞𝑛+1 

Then gcd(𝑎, 𝑏) = 𝑟𝑛. 



Bezout’s Lemma: 

𝑎, 𝑏 ∈ ℕ, gcd(𝑎, 𝑏) = 𝑑. 𝑇ℎ𝑒𝑛 ∃𝑥, 𝑦 ∈ ℤ, such that 𝑎𝑥 + 𝑏𝑦 = 𝑑. 

Some problems: 

1)Suppose 𝑎𝑥0 + 𝑏𝑦0 = 𝑑, where 𝑑 = gcd(𝑎, 𝑏). Is (𝑥0, 𝑦0) 

unique? 

2)Prove that there exists infinitely many pairs of natural 

numbers such that they are consecutive and each is not 

square free. 

Necessary condition for existence of a linear Diophantine in 

2 variables: 

𝑑 = gcd(𝑎, 𝑏).  Now if 𝑎𝑥 + 𝑏𝑦 = 𝑐. The necessary condition 

for solution to exist is 𝑑|𝑐. 

Congruence: 

 If 𝑚|(𝑎 − 𝑏), then 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚). 

 𝑎 ≡ 𝑏 + 𝑚𝑘(𝑚𝑜𝑑 𝑚), ∀𝑘 ∈ ℤ 

 𝑐𝑎 ≡ 𝑐𝑏(𝑚𝑜𝑑 𝑚) ∀𝑐 ∈ ℤ 

 Modulus is equivalence relation.  

 𝑎 ≡ 𝑎(𝑚𝑜𝑑 𝑚)[reflexive] 

 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) ⇔ 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑚)[symmetric] 

 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚), 𝑏 ≡ 𝑐(𝑚𝑜𝑑 𝑚) ⇒ 𝑎 ≡ 𝑐(𝑚𝑜𝑑 𝑚) 

 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚), 𝑐 ≡ 𝑑(𝑚𝑜𝑑 𝑚) ⇒ 𝑎 + 𝑐 ≡ 𝑏 +

𝑑(𝑚𝑜𝑑 𝑚), 𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑚) 

 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) ⇒ 𝑎𝑛 ≡ 𝑏𝑛(𝑚𝑜𝑑 𝑚) 

 𝑘𝑎 ≡ 𝑘𝑏(𝑚𝑜𝑑 𝑚), gcd(𝑚, 𝑘) = 1 ⇒ 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) 

 

 



Fermat’s Theorem: 

𝑎, 𝑝 ∈ ℕ, 𝑝 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒, gcd(𝑎, 𝑝) = 1. Then 𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑚) 

Inverse w.r.t. modulo: 

𝑎, 𝑚 ∈ ℕ, suppose 𝑘𝑎 ≡ 1(𝑚𝑜𝑑 𝑚), 𝑘 ∈ ℤ. Them k is the 

inverse of a modulo m. 

The necessary condition for existence of inverse is 

gcd(𝑎, 𝑚) = 1. 

Wilson’s Theorem: 

P is prime iff 𝑝|(𝑝 − 1)! + 1. 

Order of a number modulo: 

𝑎, 𝑚 ∈ ℕ, gcd(𝑎, 𝑚) = 1. The lowest k such that  

𝑎𝑘 ≡ 1(𝑚𝑜𝑑 𝑚) is called the order of a w.r.t. m or 𝑂𝑟𝑑𝑚(𝑎). 

 If 𝑎, 𝑚 ∈ ℕ, 𝑎𝑘 ≡ 1(𝑚𝑜𝑑 𝑚). Then 𝑂𝑟𝑑𝑚(𝑎)|𝑘. 

Complete Residue system(CRS): 

𝑚 ∈ ℕ, {𝑎1, 𝑎2, … , 𝑎𝑛} is a CRS w.r.t. m if  

𝑎𝑖 ≢ 𝑎𝑗(𝑚𝑜𝑑 𝑚) ∀𝑖 ≠ 𝑗. 

Reduced Residue system(RRS): 

𝑚 ∈ ℕ, {𝑎1, 𝑎2, … , 𝑎𝑛} is a RRS w.r.t. m if gcd(𝑎𝑖 , 𝑚) = 1 ∀𝑖 

& 𝑎𝑖 ≡ 𝑎𝑗(𝑚𝑜𝑑 𝑚) ∀𝑖 ≠ 𝑗. 

Euler’s Totient function: 

𝝓(𝑚) = number of natural numbers less than m and co-

prime to m. Note that, ∅(𝑝) = 𝑝 − 1 if p is prime. 



Euler’s Theorem: 

𝑎, 𝑚 ∈ ℕ, gcd(𝑎, 𝑚) = 1. Then 𝑎∅(𝑚) ≡ 1(𝑚𝑜𝑑 𝑚). 

Note that, fermat’s theorem is a special case of this. 

 Let the divisors of n be 1 = 𝑑1 < 𝑑2 < ⋯ < 𝑑𝑘 = 𝑛. 

Then ∅(𝑑1) + ∅(𝑑2) + ⋯ + ∅(𝑑𝑘) = 𝑛. 

Highest power of a prime p in n! : 

⌊
𝑛

𝑝
⌋ + ⌊

𝑛

𝑝2
⌋ + ⌊

𝑛

𝑝3
⌋ + ⋯ 

Pythagorean Triples:  

(𝑎, 𝑏, 𝑐) is called a Pythagorean triple if 𝑎2 + 𝑏2 = 𝑐2. A 

Pythagorean triple (𝑎, 𝑏, 𝑐) is called primitive if  

gcd(𝑎, 𝑏) = 1. 

 gcd(𝑎, 𝑏) = gcd(𝑎, 𝑐) = gcd(𝑏, 𝑐) 

 For a primitive triple, c is always odd, i.e. a, b are of 

opposite parity. 

 4|𝑎 𝑜𝑟 4|𝑏, 60|𝑎𝑏𝑐, 3|𝑎𝑏. 

Some problems: 

1) Let 𝑥𝑛 denotes the 𝑛𝑡ℎ non square positive integer. Then 

𝑥1 = 2, 𝑥2 = 3, 𝑥3 = 5, 𝑥4 = 6 𝑒𝑡𝑐. For a positive real 

number x, denote the integer closest to it by <x> If x=m+0.5, 

where m is an integer, then <x>=m. Eg. <1.2> = 1, <2.8> = 3, 

<3.5> = 3. Show that 𝑥𝑛 = 𝑛+< √𝑛 > 

2) Let p be a prime number bigger than 5. Suppose the 

decimal expansion of 
1

𝑝
 looks like 0. 𝑎1𝑎2 … 𝑎𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ where the line 



denotes a recurring decimal. Prove that 10𝑟 leaves a 

remainder of 1 on dividing by p. 

3) Let 𝑎, 𝑏, 𝑐, 𝑑  be integers such that 𝑎𝑑 − 𝑏𝑐 ≠ 0. Suppose 

𝑏1, 𝑏2 are integers both of which are multiples of 𝑎𝑑 − 𝑏𝑐. 

Prove that there exists integers simultaneously satisfying 

both the equations 𝑎𝑥 + 𝑏𝑦 = 𝑏1, 𝑐𝑥 + 𝑑𝑦 = 𝑏2. 

4) Consider the equation 𝑛2 + (𝑛 + 1)4 = 5(𝑛 + 2)3.                                                              

A) Show that, any integer of the form 3𝑚 + 1 or 3𝑚 + 2 can-

not be a solution of this equation.                                                                         

B) Does the equation have a solution in positive integers? 

5) Show that, for any positive integer n, the sum of 8n+4 

consecutive positive integers cannot be a perfect square. 

6) A) Show that there cannot exist three prime numbers, 

each greater than 3, which are in arithmetic progression with 

a common difference less than 5. 

    B) Let k>3 be an integer. Show that it is not possible for k 

prime numbers, each greater than k, to be in arithmetic 

progression with a common difference less than or equal to 

k+1. 

7) For any real number x, let [𝑥] denote the largest integer 

less than or equal to x. Let 𝑁1 = 2, 𝑁2 = 3, 𝑁3 = 5 be the 

sequence of non-square positive integers. If 𝑚2 < 𝑁𝑛 <

(𝑚 + 1)2 then show that 𝑚 = [√𝑛 +
1

2
] 

8) Let R and S be two cubes with sides of lengths r and s 

respectively, where r and s are positive integers. Show that 



the difference of their volumes equals the difference of their 

surface areas, iff 𝑟 = 𝑠. 

9) Let m be a natural number with digits consisting entirely of 

6’s and 0’s. Prove that m is not the square of a natural 

number. 

10) Let N be a positive integers such that 𝑁(𝑁 − 101) is the 

square of a positive integer. Then determine all possible 

values of N. [Note that 101 is prime] 

11) Show that the sum of 12 consecutive integers can never 

be a perfect square. Give an example of 11 consecutive 

integers whose sum is a perfect square. 

12) Consider (n>1) lotus leaves placed around a circle. A frog 

jumps from one leaf to another in the following manner. It 

starts from one selected leaf. From there, it skips exactly one 

leaf in the clockwise direction and jumps to the next one. 

Then it skips exactly two leaves in the clockwise direction and 

jumps to the next one. Then it skips three leaves again in the 

clockwise direction and jumps to the next one, and so on. 

Notice that the frog may visit the same leaf more than once. 

Suppose it turns out that if the frog continues this way, then 

all the leaves are visited by the frog sometime or the other. 

Show that n cannot be odd. 

13) Find all positive integers n for which 5𝑛 + 1 is divisible by 

7. Justify your answer. 

14) 1.Let 𝑚1 < 𝑚2 < ⋯ < 𝑚𝑘 be positive integers 
1

𝑚1
,

1

𝑚2
, … ,

1

𝑚𝑘
 are in arithmetic progression. Then prove that 

𝑘 < 𝑚1 + 2. 



   2. For any integer k > 0, give an example of a sequence of k 

positive integers whose reciprocals are in arithmetic 

progression. 

15) Let d be a positive integer. Prove that there exists a right-

angled triangle with rational sides and area equal to d if and 

only if there exists an arithmetic progression 𝑥2, 𝑦2, 𝑧2 of 

squares of rational numbers whose common difference is d. 

16) Let 𝑔: ℕ → ℕ with 𝑔(𝑛) being the product of the digits of 

n. 

        A)Prove that 𝑔(𝑛) ≤ 𝑛 for all natural number n. 

        B)Find all 𝑛 ∈ ℕ, for which 𝑛2 − 12𝑛 + 36 = 𝑔(𝑛). 

17) Let 𝑎, 𝑏, 𝑐 ∈ ℕ be such that 

                     𝑎2 + 𝑏2 = 𝑐2 𝑎𝑛𝑑 𝑐 − 𝑏 = 1. 

Prove that  

    i) a is odd. 

    ii) 4 | b. 

    iii) 𝑐|𝑎𝑏 + 𝑏𝑎 

18) If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚𝑛), then prove that  

𝑎𝑚 ≡ 𝑏𝑚(𝑚𝑜𝑑 𝑚𝑛+1) 

For 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℕ 

19) Find the remainder when 21990 is divided by 1990. 

20) Prove that 
𝑘7

7
+

𝑘5

5
+

2𝑘3

3
−

𝑘

105
∈ ℤ, ∀𝑘 ∈ ℕ. 

 



21) 𝑝, 𝑞 are distinct primes. Prove that  

𝑝𝑞−1 + 𝑞𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑝𝑞) 

22) Find the last 3 digits of 79999 

23) Solve for 𝑛 − ∅(𝑛) = 8, 𝑛 ∈ ℕ. 

24) ∀𝑛 ∈ ℕ, 𝑆(𝑛) denotes number of ordered pairs (x,y) of 

positive integers for which 
1

𝑥
+

1

𝑦
=

1

𝑛
. Determine the set of 

positive integers for which 𝑆(𝑛) = 5. 

25) Is a there any natural number n such that when written in 

base ten will end with exactly 2022 zeros? 

26) Prove that there exist 100 consecutive natural numbers 

such that exactly 3 of them are prime. 

27) Prove that the positive integers n that can-not be written 

as a sum of r consecutive positive integers with r>1 are of the 

form 𝑛 = 2𝑙 , 𝑙 ≥ 0. 

28) Consider a right-angled triangle with integer-valued 
sides a<b<c where a, b, c are pairwise co-prime. Let d=c−b. 
Suppose d divides a. Then 
(a) Prove that 𝑑 ≤ 2. 
(b) Find all such triangles (i.e. all possible triplets (a, b, c )) 
with perimeter less than 100. 

29) Prove that every positive rational number can be 
expressed uniquely as a finite sum of the form 

𝑎1 +
𝑎2

2!
+

𝑎3

3!
+ ⋯ +

𝑎𝑛

𝑛!
, 

Where 𝑎𝑛 are integers such that 0 ≤ 𝑎𝑛 ≤ 𝑛 − 1 ∀𝑛 > 1. 



30) A function 𝑓(𝑛) defined on the set of positive integers is 
said to be multiplicative if 𝑓(𝑚𝑛) = 𝑓(𝑚)𝑓(𝑛) whenever m 
and n have no common factors greater than 1. Are the 
following functions multiplicative? Justify your answer. 

  a)𝑔(𝑛) = 5𝑘 , where k is the number of distinct primes that 
divide n. 

  b) 

ℎ(𝑛) = {0 𝑖𝑓 𝑛 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 𝑘2 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑘 > 1
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

31) Suppose that a is an irrational number. 

       a) If there is a real number b such that (𝑎 + 𝑏) & 𝑎𝑏 are 

rational numbers, show that a is quadratic surd. ( a is a 

quadratic surd if it is of the form 𝑟 + √𝑠 𝑜𝑟 𝑟 − √𝑠  for some 

rationals r and s, where s is not the square of a rational 

number ). 

      b) Show that there are two real numbers 𝑏1 & 𝑏2 such 

that   

                 i) 𝑎 + 𝑏1 is rational but 𝑎𝑏1 is irrational. 

                 ii)𝑎 + 𝑏2 is irrational but 𝑎𝑏2 is rational. 

[Hint: Consider two cases, where a is a quadratic surd and 

not a quadratic surd respectively.] 

32) Show that 4𝑛 + 𝑛4 is composite ∀𝑛 > 1, 𝑛 ∈ ℕ. 

33) Find a four digit number M such that the number 𝑁 =

4 × 𝑀 has the following properties: 



        a) N is also a four-digit number. 

        b) N has the same digits as in M, but in the reverse 

order. 

34) Let A be the set of integers satisfying the following 

properties: 

      i) if 𝑚, 𝑛 ∈ 𝐴, 𝑡ℎ𝑒𝑛 𝑚 + 𝑛 ∈ 𝐴. 

      ii) there is no prime number that divides all elements of A. 

  a) Suppose 𝑛1 𝑎𝑛𝑑 𝑛2 be two integers belonging to A such 

that 𝑛2 − 𝑛1 > 1. Show that you can find two integers 

𝑚1, 𝑚2 in A such that 0 < 𝑚2 − 𝑚1 < 𝑛2 − 𝑛1. 

  b) Hence show that there are two consecutive integers 

belonging to A. 

  c) Let 𝑛0, 𝑛0 + 1 ∈ 𝐴. Show that if 𝑛 ≥ 𝑛0
2, then 𝑛 ∈ 𝐴. 

35) Suppose S is the set of all positive integers. For 𝑎, 𝑏 ∈ 𝑆, 

define 𝑎 ∗ 𝑏 =
𝑙𝑐𝑚(𝑎,𝑏)

gcd(𝑎,𝑏)
. For example, 8 ∗ 12 = 6. Show that 

exactly two of the following three properties are satisfied:  

     A) If 𝑎, 𝑏 ∈ 𝑆, 𝑡ℎ𝑒𝑛 𝑎 ∗ 𝑏 ∈ 𝑆. 

     B)(𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) ∀𝑎, 𝑏, 𝑐 ∈ 𝑆. 

     C)There exists an element 𝑖 ∈ 𝑆, such that  

𝑎 ∗ 𝑖 = 𝑎 ∀𝑎 ∈ 𝑆 

36) Let S be the set of integers k, 1 ≤ 𝑘 ≤ 𝑛, such that 

gcd(𝑘, 𝑛) = 1. What is the arithmetic number of integers in 

S? 



37) Let n be a positive integer. If n has odd number of 

divisors (including 1 and n), then show that n is a perfect 

square. 

38) Let a and b be two non-zero rational numbers such that 
the equation 𝑎𝑥2 + 𝑏𝑦2 = 0 has a nonzero solution in 
rational numbers. Prove that for any rational number t, there 
is a solution of the equation 𝑎𝑥2 + 𝑏𝑦2 = 𝑡. 

39) Let 𝑎1, 𝑎2, … … . 𝑎𝑛 be integers. Show that there exist 
integers k and r such that the sum 𝑎𝑘 + 𝑎𝑘+1 +
⋯ … … . 𝑎𝑘+𝑟 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 𝑛. 

40) Let 𝑎2 + 𝑏2 = 1,  𝑐2 + 𝑑2 = 1, 𝑎𝑐 + 𝑏𝑑 = 0. Prove that 
𝑎2 + 𝑐2 = 1,  𝑏2 + 𝑑2 = 1, 𝑎𝑏 + 𝑐𝑑 = 0. 

41) If p is a prime number and a > 1 is a natural number. Then 

show that the g.c.d. of the two numbers (𝑎 − 1) &
𝑎𝑝−1

𝑎−1
 is 

either 1 or p. 

42) Let 𝑛 ≥ 2 be an integer. Let m be the largest integer 
which is less than or equal to n, and which is a power of 2. 

Put 𝑙𝑛= least common multiple of 1,2,…,n. Show that 
𝑙𝑛

𝑚
 is 

odd, and that for every integer 𝑘 ≤ 𝑛, 𝑘 ≠ 𝑚,
𝑙𝑛

𝑘
 is even. 

Hence, prove that 1 +
1

2
+

1

3
+ ⋯ +

1

𝑛
 is not an integer. 

 

 

       

  

 


